

- This is the second lecture note of the course PATTERN RECOGNITION in English in 104-2 semester, EE, FJU.
- In this lecture note, I will introduce mathematical basics classification.
- Web site of this course: <u>http://pattern-recognition.weebly.com</u>.

p.4

Contents

- 1. Introduction
- 2. Feature space
- 3. Patterns in feature space
- 4. Discriminant and classifier
- 5. Find the best classifier

Fu Jen University Department of Electrical Engineering Wang, Yuan-Kai © Copyright

- Last unit we know the processing pipeline of an image recognition system
 - Preprocessing step: process the image the denoise and enhance objects
 - Feature extraction step: extract object's features
 - Classification step: classify the objects into a class
- Classification in feature space includes two steps
 - Learning step: given a lot of patterns in feature space (black and red dots), find the line that separates the patterns.
 - Classification step: given a new pattern with unknown class (one large blue dot), find the class of the given pattern by the line.
- We will explore more in this unit for the "classification" step.

- We classify image objects, such as fishes and faces, by their distribution in an algebraic space called feature space.
 - Although practically fish classification and face recognition are different problems
 - Theoretically we think they are the same problem: classify objects in their feature spaces
- In this feature space with a two-class problem
 - Each axis represents a feature
 - Each dot represents an image object
 - A class of image objects is assumed to be clustered in a region
 - A class consists a set of object patterns/object points
 - A line/curve is called a classifier (or a classification method) if it separates the space into two regions and separates the image objects into two sets.

- In this unit, we will explore concepts and terminologies of classification in feature space
- First I will explain "feature space" in Section 2
- Section 3 gives some examples of patterns in feature space
 - Linear patterns
 - Nonlinear patters
- Section 4 explains classifier as discriminants.
 - The straight line separating the two classes is called : discriminant, or classifier
 - The concept of minimum distance classifier is also introduced.
- Section 5 explains machine learning for pattern recognition.

- For a classification problem, there are infinite classifiers
 - Linear classifier and nonlinear classifier
 - But we may have only one "best" classifier
- How can a computer program "automatically" find the best classifier? We need two things
 - Learning (training) algorithm
 - Learning (training) data
- What is a learning algorithm
 - Learning algorithm uses learning data to find the best classifier.
- But how?
 - Remember that each classifier has an error rate. And the best classifier has the minimum error rate.
 - We have infinite number of classifiers: infinite straight lines and infinite curves. Each classifier has an error rate.
 - We can find the best classifier only if we calculate all of the error rates of classifiers and find the minimum of these error rate values.
 - But it is a mission impossible.
 - Therefore a lot of complex algorithm are developed to conquer this difficulty.
- This unit will focus on "classification in feature space" only.
- Learning algorithms will not be explained in this unit, but will be explained in next unit.

• This section will explain what is feature space.

- A feature vector p_1 is a point in a *d*-dimension pattern space.
- Each element of the vector is a feature, and each one corresponds to one dimension (axis) in the space.
- In the fish classification example, we have only two features
 - The feature space is a 2-dimensional space: d=2.
 - Each fish is denoted as p_1 .

Math Definition

- Mathematically we can easily extend a pattern classification problem into ndimensional space
- We then have two mathematical tools to help us solve classification problems
 - Linear algebra: if we consider the feature space as an algebraic space
 - Statistics: if we consider features as random variables and features vectors as random vectors

- 2D with 2 classes is a standard case that is only used for concept explanation
 - It is easy to demonstrate basic concepts of pattern recognition
- But standard cases are only toy examples but not real-case examples
 - Sometimes we will show real-case examples
 - Ex.: 2D with more than two classes, 3D with two or more than two classes.

- Three subsections in Section 3
 - 3.1 Linearly separable patterns
 - 3.2 Piecewise-linear separable patterns
 - 3.3 Nonlinearly separable patterns
- A class consists a set of object patterns/object points
- Separable patterns means that there exist lines, curves or hyperplanes that discriminate the classes
- Linearly separable patterns belong to linear classification problem.
 - Linear => straight line (2D), because a straight line is a linear function
 - Linear => plane (3D), because a plane is also a linear function
 - For more than 3D cases, linear => hyperplane.
 - All first-order polynomials are linear
- Nonlinearly separable patterns belong to nonlinear classification problem.
 - Circle is a nonlinear function
 - Ellipse is a nonlinear function
 - Parabola and hyperbolic curves are nonlinear functions
 - All high-order polynomials are nonlinear

- Here we can see three examples of linearly separable patterns
 - The first row has two 2D examples
 - The second row shows a 3D example
- In a 2D space, the line to linearly separate classes are called a linear classifier
 - The classifier can be described by ax + by + c = 0, if the x_1 is regarded as x, and x_2 is regarded as y.
 - The classifier is also called a decision surface, decision line, or decision boundary.
- In a 3D space, the plane to linearly separate classes are still called a linear classifier
 - A plane can still be described by a linear formula: ax + by + cz + d = 0.

- Patterns in feature space are usually not linearly separable
- Here we give some examples of nonlinearly separable patterns
 - Piecewise linearly separable
 - Circularly separable
 - XOR
 - Unclear boundary
- Piecewise linearly separable
 - Classes can not be separated by only one lines, but can be separated by more lines (pieces of lines).
- Circularly separable
 - Classes have clear boundary, but they can not be separated by lines. Circle or ellipse can be used to separate these two classes.
- XOR
 - Two classes, red and blue, can not be separated by any linear formulas.
 - This is a very famous case for pattern classification. Later we may see more discussions of this XOR case.
- Unclear boundary (for the fish classification example)
 - The previous three examples are nonlinear but with clear boundary between classes.
 - For the fish classification example, there is no clear boundary between two classes. Therefore a line is not able to separate the two classes.
 - This example is very close to many real cases in pattern recognition systems. More advanced pattern recognition algorithms are proposed for this kind of nonlinearity.

- For this example, both linear discriminant and nonlinear discriminant can separate patterns
 - C1 region represents a lot of pattern points that belong to the class 1
 - C2 region represents a lot of pattern points that belong to the class 2
 - The line *x*-*y*=0 can separate the two classes
 - A parabola can also separate the two classes
- However
 - This example should be called a linear separable example
 - That is, if "at least one" linear discriminant exists for the example, then the example should be called "linear separable"

- For this 3-class example, it is called nonlinearly separable, because
 - No linear discriminants exist to separate classes 2 and 3.
 - Only nonlinear discriminants can solve this example.
- Linear discriminants are easier than nonlinear discriminants
 - Always use linear discriminants first to separate patterns
 - If it is not possible to use linear discriminants, then we still can use nonlinear discriminants

- Piecewise-linear discrimination:
 - The study of linear discrimination in the past was very popular in academic circles because it was easy to produce iterative learning algorithms.
 - So, in the early years of PR research a great deal of attention was devoted to *separable* problems.
 - Separable problems are the problems in which discriminants could be found that gave **error-free separation** of points in pattern space.
- · However, piecewise-linear discrimination
 - is used only in simulation presented in classroom explanation.
 - is useless in real cases because of the presence of nonconvex and noncompact clusters.

- The Sebestyen problem is proposed by Sebestyen in 1962
 - The problem consists 2 classes, each composed of 2 subclasses.
 - No linear discriminant exists that will separate the classes.
 - Sebestyen believed that the discriminant of lowest degree that will separate them is of 6th degree.
- The XOR problem is proposed by Minsky in 196x.
 - The problem consists 2 classes, each composed of 2 points.
 - The XOR is a very simple case of the sebestyen problem: each cluster has only one point.
 - It is called XOR because it corresponds to the XOR logic operation
 - 0 XOR 0 gets 0
 - 1 XOR 1 gets 0
 - 1 XOR 0 gets 1
 - 0 XOR 1 gets 1
 - If we consider the simple XOR logic operation to be a pattern classification problem
 - It is actually not a simple PR problem.
 - It can not be solved by linear separation, but only by piecewise or nonlinear separation.

- Piecewise linear separation
 - 2 linear discriminants can separate all of the subclasses from each other.
 - Each discriminant will yield one decision, labeled in the diagram "+" or "-".
- However, nonlinear separation is also possible to separate these two problems
 - Ex.: A quadratic discriminant, such as a hyperbolic parabola, is able to separate the XOR and Sebestyen's problems

Where u=mx+ny and v=px+qy,a,b,c,d,k,m,n,p,q are constants.

- Previous discussions concern only 2-class problem
- For N-class problems, we need to use "Divide and conqure" to reduce the complexity of an N-class problem
 - (A) Considering *n* different problems: class C_i , $1 \le i \le n$.
 - (B) If these classes are linear-dependent, they can be decomposed into *n* 2-classes.
 - (C) If the no. of discriminants in the general *n*-class problem could grow as n^2 , in the decomposed approach the no. of discriminants will grow as *n*.

- Left example: Circular patterns can not be separated by linear and piecewise ways.
- Right example: Unclear boundary can not be separated by linear and piecewise ways.

- Sometimes it is possible to separate unclear-boundary patterns with piecewise linear discriminant
- But it is called overfitting and it is not good for pattern classification
 - For a new pattern, the blue circle dot, it is mis-classified
 - That is, although the piecewise linear lines are "perfect" for "learning data", it is still possible tomis-classify unknown patterns. It is not "perfect" actually.
 - For a "perfect" learned classifier that is "actually not perfect", we call it "overfitting".
- Conclusion
 - For unclear boundary problems, it is nonsense to get a perfect classifier
 - All we need to get is to get a "minimum error" classifier
 - Or we can use other complicated methods

- Linear separation emphasizes on "linear separability"
 - It is assumed that there was no overlap of clusters of different classes.
 - However, real-world problems usually contain overlapped clusters.
- Non-separable patterns means overlapped patterns
 - No perfect linear/piecewise-linear discriminant exists.
 - A good way is to choose a linear/piecewise-linear discriminant with the munimum error.
- The minimum-error discriminant
 - It is usually the case that practical applications will produce **overlapping clusters**.
 - If it is less costly to reject rather than to make an error, we could use the paired discriminants shown in dotted line.
 - Error is usually undetected, while reject is usually processed "manually," that is, by human being.

- Why to increase dimensions of features
 - Two-class patterns in 2D may overlap and become a unclearboundary nonlinear problem
 - Usually by adding more features, ex, add one more feature to become a 3D feature space, those patterns become separable
 - Of course, the one more feature should be more discriminative to classify the two classes.
- How to increase the dimensions of features
 - Real features
 - Extract real features from images
 - Simulated features
 - Use mathematical ways, such as transform, to increase the number of features.
 - A very well-known method: SVM (support vector machine), uses this way to get very good classification results for many PR problems.

- Section 4 has three sub-sections
 - 4.1 Linear discriminant
 - 4.2 Multi-class discriminant
 - 4.3 Nonlinear discriminant

- Linear case
 - This decision boundary is also called a "straight line"
 - It is also called linear classifier, such as
 - Minimum distance classifier
 - Perceptron
- Nonlinear case
 - This decision boundary is also called a "curve"
 - It is also called nonlinear classifier
 - Bayes classifier
 - Support vector machines (SVM)
 - Backpropogation, Decision tree, ...
- For *D*>2, we call the
 - Linear decision surface as a "decision hyperplane"
 - Nonlinear decision surface as a "decision surface"

- Suppose
 - Only two classes C1 and C2
 - Only two features: f1 and f2
 - A pattern (image object) is represented as the coordinates (f1, f2)
- The straight line to discriminate C1 and C2 is called a linear discriminant function.
 - When a hyperplane/hypersurface separates 2 clusters, the function that defines it is called a *discriminant*.
 - The functional form of a discriminant is an equation with
 - The coefficients and variables of the space on the left side
 - Zero on the right side.
 - Discriminant is the locus of all points that satisfy the equation
- The best well-known linear discriminant is called "fisher" classifier.

- Here we extend the two-feature case (n=2) to more-feature case: n>2.
- The feature space is then extended into *n*-D: $(x_1, x_2, ..., x_n)$
 - We replace the symbol f_1, f_2 with x_1, x_2 for generalization.
- A hyperplane is a linear equation in n-dimensional space for n>2.
 - Remember that a linear equation in 2D is called a straight line.
- A hyperplane is an equation, and a discriminant is an inequality.

• The slide gives a quick comparison between 2D and *n*-D cases. All formula have appeared in previous two slides.

• After the understanding of discriminant with the formula of a basic form, we want to rewrite the formula of discriminant into a matrix form.

- Here we successfully apply the Linear Algebra, a good mathematic tool, to present the linear discriminant.
- That means linear algebra is very helpful for us to know more of linear discriminants, if we proceed to learn more of linear discriminant.
 - However, in this unit, we do not go deep into more of linear discriminant.
 - In this unit I just give you a basic understanding of linear discriminant.

- In the example for three classes, m=3.
- We have 3 discriminant functions $d_1(x)$, $d_2(x)$, $d_3(x)$
- There are 3 discriminant regions $D_i = \{ x \mid d_i(x) > 0; d_j(x) < 0, j \neq i \}, 1 \le i \le 3 \}$
- If x locates in D_i , ie. $D_i > 0$, then $x \in C_i$

- There are a lot of nonlinear discriminants
 - Bayesian classifier
 - SVM
 - NN: backpropagation, deep neural network, ...
 - Adaboost
- SVM and NN are the two popular nonlinear classifiers in recent years.

- This is a special case of nonlinear equation d(x), just for circular separable patterns.
- The nonlinear equation is a circle. It corresponds to a discriminant.
- In the right bottom, I write a new derivation of the d(x) and the discriminant into a normal form
 - You should be able to write w5, w4, w3, w2, w1, and w0 by yourself.
 - Could you write the *W* vector and the *x* vector by yourself?

- Nonlinearly separable patterns in low dimensions can be linearly separable in high dimensions,
- SVM fully applies this concept to classify very difficult problems:
 - First step: transform all patterns into higher dimensional feature space.
 - Second step: apply linear classifier to recognize patterns in the higher dimension.

- Please see the online book for details
 - Celebi Tutorial: Neural Networks and Pattern Recognition Using MATLAB (https://www.byclb.com/TR/Tutorials/neural_networks/)
 - Chapter 8 Classical Models of Neural Network

• Section 5 introduces "machine learning" for the finding of the best classifier.

- To find the classifier of a classification problem is also called a machine learning problem.
- A machine learning algorithm can either
 - Find a possible classifier, or
 - Find the best classifier

- A brute force method is a bad but simple approach to find the best classifier.
- It works like "try and error". It works straightly.
- But it take too many times to find the solution: the best classifier.
- So there are other better machine learning algorithms:
 - SVM, NN, Bayesian classifier, ...
- How do think about this brute force algorithm?
 - Is it efficient or is it time consuming? Is there any other algorithms that works better?
 - Could it find the best classifier? Or it just finds possible classifiers.

• Maximum margin is a good criteria to define "the best" classifier in linear cases.

• Minimum error is one of good criterion to define a "best" classifier for nonlinear cases.

