Introduction to Neural Networks

Part II: Learning of MLP

Web site of this course: <u>http://pattern-recognition.weebly.com</u>

Two Parts

Part I : Neural information processing

- Origins
- Perceptron
- Multilayer perceptron (MLP)
- Convolutional networks (CNN)

Part II : Learning of MLP

- An example of backpropagation learning
- Learning algorithms
- Optimization and learning

Learning of MLP Network

An example of learning Learning algorithms Optimization theory

http://www.existor.com/en/news-neural-networks.html

Training the MLP: Backpropagation

Testing for K-class classification problem

- For a given *x* with unknown class
- $x \in \text{class } k$, if $y_k = max_i y_i$
- $y_i = v_i^T z = \sum_{h=1}^H v_{ih} z_h + v_{i0}$

That is

- A w represents a MLP
- Given a *w*, then we can classify a pattern *x*

A Machine Learning problem: how to obtain the *w* of a MLP

- We need a set of training patterns (*x*,*y*)
- We need a learning algorithm to learn w by (x,y)
 => Backpropagation learning algorithm B: w=B(x,y)

$$w = [w_1, \cdots, w_K, v_1, \cdots, v_H]$$

A multilayer neural network

- A three-layer network: one hidden layer
 - 9 nodes(x_i , h_j , y_k), 6 neurons(h_j , y_k)
 - 18 weights(w)

Example problem: Convert letters A,B,C

- Input: 1-of-K binary encoding
 - Letters are encoded into binary: A 100, B 010, C 001
- Output
 - Convert A to B, B to C, C to A
 - 100 -> 010, 010 -> 001, 001 -> 100

Training of the network

- Given a training pair (*x*,*y*)
 - *x*: input values, y: desired output values
- Network training will get a weight matrix $w = (w^{xh}, w^{hy})$
- Basic steps to train the network
 - 1. Randomly initialize the weight matrix *w*
 - **2.** Forward propagation: y'=xw
 - 3. Compute the error: E=y-y'
 - 4. Compute weight change value by the error: $\Delta w = f(E)$
 - 5. Backpropagation: $w = w \Delta w$
 - 6. Go to step 2

supervised learning

Step 1: Random starting weights

- Now we will compute the values of the first hidden node h_1 in the second layer
- The weights are usually initialised to be small random values between -1 and 1

Step 2: Forward propagation Weighted sum

• Z_{h1} represents the weighted sum of the node h_1 $z_{h1} = x_1 w_{11}^{xh} + x_2 w_{21}^{xh} + x_3 w_{31}^{xh} = 1 * 0.2 + 0 * -0.03 + 0 * 0.14 = 0.2$ $z_{h1} = \sum_{i=1}^{3} x_i w_{i1}^{xh}$

Step 2: Forward propagation Activation of weighted sum

- Assume we use bipolar sigmoid
- $h_1 = sigmoid(z_{h1}) = sigmoid(0.2) \approx 0.197$

$$h_1 = f(z_{h1}) \\ = \frac{1}{1 + e^{-z_{h1}}}$$

 $h_1 = sigmoid(z_{h1})$

 $= 2^* (f(z_{h1}) - 0.5)$

Binary Sigmoid Function

Bipolar Sigmoid function

Step 2: Forward propagation Matrix notation

$$h_{j} = sigmoid\left(z_{h_{j}}\right) = sigmoid\left(\sum_{i=1}^{3} x_{i}w_{ij}^{xh}\right) \qquad w^{xh} = \begin{bmatrix} 0.2 & 0.15 & -0.01 \\ -0.03 & -0.1 & -0.06 \\ 0.14 & -0.2 & 0.03 \end{bmatrix}$$

$$z_h = xw^{xh} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.2 & 0.15 & -0.01 \\ -0.03 & -0.1 & -0.06 \\ 0.14 & -0.2 & 0.03 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.15 & -0.01 \end{bmatrix}$$

 $\begin{aligned} h &= sigmoid(z_h) \\ &= sigmoid([0.2 \quad 0.15 \quad -0.01]) \\ &= [0.197 \quad 0.149 \quad -0.01] \end{aligned}$

Step 2: Forward propagation Output layer

• Assume w^{hy} are the weights $w^{hy} = \begin{bmatrix} 0.08 & 0.11 & -0.3\\ 0.1 & -0.15 & 0.08\\ 0.1 & 0.1 & -0.07 \end{bmatrix}$

$$= \begin{bmatrix} 0.197 & 0.149 & -0.01 \end{bmatrix} \begin{bmatrix} 0.08 & 0.11 & -0.3 \\ 0.1 & -0.15 & 0.08 \\ 0.1 & 0.1 & -0.07 \end{bmatrix} = \begin{bmatrix} 0.03 & -0.0017 & -0.0465 \end{bmatrix}$$

$$y_{k} = sigmoid(z_{y_{k}})$$
$$- sigmoid\left(\sum_{j=1}^{3} h_{i}w_{jks}^{hy}\right)$$

- huhy

We usually use softmax function for output nodes, but not sigmoid. See next slide.

Step 2: Forward propagation Output layer

Step 3: Computing output error

 $y = [0 \ 1 \ 0], p = [0.345 \ 0.335 \ 0.32]$

 $e = p - y = [0.345 \quad 0.335 \quad 0.32] - [0 \quad 1 \quad 0]$ = [0.345 -0.665 0.32]

e

Step 3: Computing output error Loss & cross entropy

- We need to calculate the total error for all the outputs combined. This is called the loss or cost of the network and is labelled with *J*.
- Three possible J
 - Absolute error $J = \sum_{k=1}^{3} |e_k| = 0.345 + 0.665 + 0.32 = 1.32$
 - Squared error $J = \sum_{k=1}^{3} e_k^2 = 0.664$
 - Cross entropy $J = -\sum_{k=1}^{3} y_k log p_k = -0 1 * log(0.335) 0 = 1.0936$

Step 4: Adjusting weights Intuition

- It feels like
 - The weights going into y_1 and y_3 should be lowered a bit, because their estimate was too high.
 - The weights going into y₂ should be raised because they were way too low and caused a large negative error.
 - The bigger the error, the more the weights should be changed.

Step 4: Adjusting weights Formula

- Mathematically the intuition is fairly easy to do.
- The error δw of the weight w
 - is proportional to the size of the thing on the other end of the connection (the activation value of the hidden node). a
 - So we can just multiply the value of the hidden node h_j times the error e_k to get δw_{jk}^{hy}

$$w_{jk}^{hy} = w_{jk}^{hy} - \delta w_{jk}^{hy}$$
$$\delta w_{jk}^{hy} \propto h_j * e_k$$

Step 4: Adjusting weights An example

- Assume a learning rate $\alpha = 0.01$ $\delta w_{jk}^{hy} = \alpha * h_j * e_k \propto h_j * e_k$
- For example, the adjustment on the top weight connecting the first hidden node to the first output node, δw_{11}^{hy} , could just be: $\delta w_{11}^{hy} = \alpha * h_i * e_k = 0.01*0.197*0.345 = 0.00068$

$$w_{11}^{hy} = w_{11}^{hy} - \delta w_{11}^{hy}$$

= 0.08 - 0.00068
= 0.07932

Step 4: Adjusting weights Matrix

• We can compute all the adjustments δw^{hy} with one matrix operation. Assume a learning rate $\alpha = 0.01$

Step 4: Adjusting weights Theory

• Why the formula?

$$w_{jk}^{hy} = w_{jk}^{hy} - \delta w_{jk}^{hy}$$

$$\delta w_{jk}^{hy} \propto h_j * e_k$$

- The theory of weights adjustment
 - Gradient descent, partial derivatives
 - The theory of optimization

Step 5: Backward propagation Basic concept

- In Step 4 we use the error e_v to update w^{hy}
- Here we need to further update w^{xh}
 - Backpropagate the error of output layer e_y to hidden layer: the error of hidden layer e_h
 - Use the error e_h to update w^{xh}

Step 5: Backward propagation Error propagation

• Backpropagate the error of output layer e_y to hidden layer: the error of hidden layer e_h

Step 5: Backward propagation

$$z_{e_{h}} = e_{h} \odot (1 - sigmoid^{2}(z_{h}))$$

$$= [-0.007 \ 0.17 \ -0.18] \odot [0.961 \ 0.978 \ 0.999] = [0.192 \ 0.147 \ -0.001]$$

$$\delta w^{xh} = \alpha x^{T} z_{e_{h}} = 0.01 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} [0.192 \ 0.147 \ -0.0001]$$

$$= \begin{bmatrix} 0.00192 \ 0.00147 \ -0.00001 \\ 0 \ 0 \ 0 \end{bmatrix}$$

$$x^{e_{h}} z_{e_{h}} w^{hy} e_{y}$$

$$y^{xh} = 0.01 \begin{bmatrix} 0.00192 \ 0.00147 \ -0.00001 \\ 0 \ 0 \ 0 \end{bmatrix}$$

-0.001

0

Step 5: Backward propagation Changing weights

$$w^{xh} = \begin{bmatrix} 0.2 & 0.15 & -0.01 \\ -0.03 & -0.1 & -0.06 \\ 0.14 & -0.2 & 0.03 \end{bmatrix} \qquad \delta w^{xh} = \begin{bmatrix} 0.00192 & 0.00147 & -0.00001 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Final network

• Final training result

• Convert letter A to letter B

- An input of 100
- Hidden nodes activation values: +1, -1 and -1.
- Output layer has weighted sums of -10, 10, -10,
 - Probabilities : 0%, 100%, 0%.
 - An output of 010.

Summary of the Single-sample Training

- Given a single training sample (*x*,*y*)
 - *x*: input values, y: desired output values
- Network training will get a new weight matrix w
- Basic steps to train the network
 - 1. Randomly initialize the weight matrix $w = (w^{xh}, w^{hy})$
 - **2.** Forward propagation: y'=xw
 - 3. Compute the error: E=y-y'
 - 4. Compute weight change value by the error: $\Delta w = f(E)$
 - 5. Backpropagation: $w = w \Delta w$
 - 6. Go to step 2

supervised learning

Learning of MLP Network

An example of **backpropagation** learning **Learning algorithms** Optimization and learning

The learning algorithm

- We just know how to train the MLP for "only one" learning sample: (*x*,*y*)
- How to train the MLP for a lot of learning samples, $\mathcal{X} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$?
 - Online learning
 - Offline(Batch) learning

Online learning vs. Batch learning

• Online

- Randomly initialize w
- For a $(x_i, y_i) \in \mathcal{X}$ in random order
 - Forward propagation: get error *e*
 - Backward propagation: get weight change Δw_i
 - Update $w : w = w \Delta w_i$
- Until convergence

Online learning is also called SGD(Stochastic gradient descent)

• Offline(Batch)

- Randomly initialize w
- While not converge
 - For all $(x_i, y_i) \in \mathcal{X}$ in sequential order
 - Forward propagation: get error *e*
 - Backward propagation: get weight change Δw_i
 - Average N weight changes: $\Delta w = (\sum_{i=1}^{N} \Delta w_i)/N$
 - Update $w : w = w \Delta w$
- Until convergence

Improving the learning algorithm

- Improving convergence
 - Momentum, adaptive learning rate
 - Improved gradient descent
- Mini-batch techniques
- Hardware acceleration
 - Parallel training, GPGPU

Parallel training of neural nets

An active topic of research.

No clear winner yet.

Baseline: lock-free stochastic gradient

- Assume shared memory
- Each processor access the weights through the shared memory
- Each processor runs SGD on different examples
- Read and writes to the weight memory are unsynchronized.
- Synchronization issues are just another kind noise...

Learning of MLP Network

An example of **backpropagation** learning Learning algorithms **Optimization and learning**

Convex

 $\begin{aligned} & \textbf{Definition} \\ & \forall \, x, y, \; \forall \, 0 \leq \lambda \leq 1, \\ & f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \end{aligned}$

Property

Any local minimum is a global minimum.

Conclusion

Optimization algorithms are easy to use. They always return the same solution.

Example: Linear model with convex loss function.

- Curve fitting with mean squared error.
- Linear classification with log-loss or hinge loss.

Non-convex

Landscape

- local minima, saddle points.
- plateaux, ravines, etc.

Optimization algorithms

- Usually find local minima.
- Good and bad local minima.
- Result depend on subtle details.

Examples

- Multilayer networks.
 Mixture models.
- Clustering algorithms.
- Learning features.

- Hidden Markov Models.
- Selecting features (some).

Derivatives

No such local cues without derivatives

- Derivatives may not exist.
- Derivatives may be too costly to compute.

Optimization vs. learning

Empirical cost

- Usually $f(w) = rac{1}{n} \sum_{i=1}^n L(x_i, y_i, w)$
- The number n of training examples can be large (billions?)

Redundant examples

- Examples are redundant (otherwise there is nothing to learn.)
- Doubling the number of examples brings a little more information.
- Do we need it during the first optimization iterations?

Examples on-the-fly

- All examples may not be available simultaneously.
- Sometimes they come on the fly (e.g. web click stream.)
- In quantities that are too large to store or retrieve (e.g. click stream.)

Offline vs. online

Minimize
$$C(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{n} \sum_{i=1}^n L(x_i, y_i, w).$$

Offline: process all examples together

Example: minimization by gradient descent

Repeat:
$$w \leftarrow w - \gamma \left(\lambda w + \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L}{\partial w}(x_i, y_i, w) \right)$$

Offline: process examples one by one

- Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example x_t, y_t (b) $w \leftarrow w - \gamma_t \left(\lambda w + \frac{\partial L}{\partial w}(x_t, y_t, w) \right)$

Stochastic Gradient Descent

- Very noisy estimates of the gradient.
- Gain γ_t controls the size of the cloud.
- Decreasing gains $\gamma_t = \gamma_0 (1 + \lambda \gamma_0 t)^{-1}$.
- Why is it attractive?