
Introduction to
Neural Networks
Part II : Learning of MLP

Web site of this course: http://pattern-recognition.weebly.com

http://pattern-recognition.weebly.com/

Two Parts
Part I : Neural information processing
Origins

Perceptron

Multilayer perceptron (MLP)

Convolutional networks (CNN)

Part II : Learning of MLP
An example of backpropagation learning

 Learning algorithms

Optimization and learning

Learning of MLP Network

An example of learning
Learning algorithms
Optimization theory

http://www.existor.com/en/news-neural-networks.html

Source:

Training the MLP: Backpropagation
Testing for K-class classification problem
• For a given x with unknown class

• x∈class k, 𝑖𝑓 𝑦𝑘 = 𝑚𝑎𝑥𝑖𝑦𝑖
• 𝑦𝑖 = 𝑣𝑖

𝑇𝑧 = σℎ=1
𝐻 𝑣𝑖ℎ𝑧ℎ + 𝑣𝑖0

𝑤 = 𝑤1, ⋯ , 𝑤𝐾 , 𝑣1, ⋯ , 𝑣𝐻

That is
• A w represents a MLP
• Given a w, then we can classify a pattern x

input vector

hidden
layers

outputs

Backpropagation

A Machine Learning problem:
how to obtain the w of a MLP

• We need a set of training patterns (x,y)

• We need a learning algorithm to learn w by (x,y)

=> Backpropagation learning algorithm B: w=B(x,y)

A multilayer neural network

• A three-layer network: one hidden layer
• 9 nodes(xi, hj, yk), 6 neurons(hj, yk)

• 18 weights(w)

Input layer Hidden layer Output layer

Example problem:
Convert letters A,B,C

• Input: 1-of-K binary encoding
• Letters are encoded into binary: A - 100, B - 010, C - 001

• Output
• Convert A to B, B to C, C to A

• 100 -> 010, 010 -> 001, 001 -> 100

0

1

0

A B

Training of the network
• Given a training pair (x,y)

• x: input values, y: desired output values

• Network training will get a weight matrix w=(wxh,why)

• Basic steps to train the network
1. Randomly initialize the weight matrix w

2. Forward propagation: y'=xw

3. Compute the error: E=y – y'

4. Compute weight change value by the error: Δw=f(E)

5. Backpropagation: w = w - Δw

6. Go to step 2
0

1

0

x ysupervised learning

𝑤𝑥ℎ
𝑤ℎ𝑦

Step 1: Random starting weights

• Now we will compute the values of the first
hidden node h1 in the second layer

• The weights are usually initialised to be small
random values between -1 and 1

𝑤𝑥ℎ
𝑤ℎ𝑦

x h y

Step 2: Forward propagation
Weighted sum

• Zh1 represents the weighted sum of the node h1

𝑤𝑥ℎ
𝑤ℎ𝑦

Step 2: Forward propagation
Activation of weighted sum

• Assume we use bipolar sigmoid

• h1 = sigmoid(zh1) = sigmoid(0.2) ≈ 0.197

ℎ1 = 𝑓 𝑧ℎ1

=
1

1 + 𝑒−𝑧ℎ1

ℎ1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧ℎ1
= 2*(f(zh1) -0.5)

Step 2: Forward propagation
Matrix notation

ℎ𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧ℎ𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
𝑖=1

3

𝑥𝑖𝑤𝑖𝑗
𝑥ℎ

𝑤𝑥ℎ =
0.2 0.15 −0.01

−0.03 −0.1 −0.06
0.14 −0.2 0.03

𝑥 = 𝑥1 𝑥2 𝑥3 = [1 0 0]

𝑧ℎ = 𝑥𝑤𝑥ℎ = 1 0 0
0.2 0.15 −0.01

−0.03 −0.1 −0.06
0.14 −0.2 0.03

= 0.2 0.15 −0.01

ℎ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧ℎ
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 0.2 0.15 −0.01
= 0.197 0.149 −0.01

Step 2: Forward propagation
Output layer

• Assume why are the weights
between hidden and output layers

𝑤ℎ𝑦 =
0.08 0.11 −0.3
0.1 −0.15 0.08
0.1 0.1 −0.07

𝑧𝑦 = ℎ𝑤ℎ𝑦

= 0.197 0.149 −0.01
0.08 0.11 −0.3
0.1 −0.15 0.08
0.1 0.1 −0.07

= 0.03 −0.0017 −0.0465

𝑦𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧𝑦𝑘

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
𝑗=1

3

ℎ𝑖𝑤𝑗𝑘𝑠
ℎ𝑦

We usually use softmax function
for output nodes, but not sigmoid.
See next slide.

Step 2: Forward propagation
Output layer

• The softmax function

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 0.03 −0.0017 −0.0465
= 0.345 0.335 0.32

𝑦′ = 1 0 0

𝑦′𝑘 = ቊ
1, 𝑝𝑘 𝑖𝑠 𝑡ℎ𝑒 max(𝑝𝑖)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0

1

0

𝑝𝑘 =
𝑒𝑧𝑦𝑘

σ𝑘=1
3 𝑒𝑧𝑦𝑘

ex

The random w gets a wrong output

x y

Step 3: Computing output error

𝑦 = 0 1 0 , 𝑝 = 0.345 0.335 0.32

𝑒 = 𝑝 − 𝑦 = 0.345 0.335 0.32 - 0 1 0
= 0.345 −0.665 0.32

e

Step 3: Computing output error
Loss & cross entropy

e

• We need to calculate the total error for all the
outputs combined. This is called the loss or cost of
the network and is labelled with J.

• Three possible J

• Absolute error

• Squared error

• Cross entropy

𝐽 =
𝑘=1

3

𝑒𝑘 = 0.345 + 0.665 + 0.32 = 1.32

𝐽 =
𝑘=1

3

𝑒𝑘
2 = 0.664

𝐽 = −
𝑘=1

3

𝑦𝑘𝑙𝑜𝑔𝑝𝑘 = −0 − 1 ∗ log 0.335 − 0 = 1.0936

0

1

0

y

0.345

0.335

0.32

p

Step 4: Adjusting weights
Intuition

• It feels like
• The weights going into y1 and y3 should be lowered a

bit, because their estimate was too high.

• The weights going into y2 should be raised because
they were way too low and caused a large negative
error.

• The bigger the error, the more the weights should be
changed. e

Step 4: Adjusting weights
Formula

• Mathematically the intuition is fairly easy to do.

• The error 𝛿𝑤 of the weight w
• is proportional to the size of the thing on the other end

of the connection (the activation value of the hidden
node). a

• So we can just multiply the value of the hidden node ℎ𝑗
times the error 𝑒𝑘 to get 𝛿𝑤𝑗𝑘

ℎ𝑦

e

𝑤𝑗𝑘
ℎ𝑦

= 𝑤𝑗𝑘
ℎ𝑦

- 𝛿𝑤𝑗𝑘
ℎ𝑦

𝑤𝑥ℎ 𝑤ℎ𝑦h

𝛿𝑤𝑗𝑘
ℎ𝑦

∝ ℎ𝑗∗ 𝑒𝑘

Step 4: Adjusting weights
An example

• Assume a learning rate 𝛼 = 0.01

• For example, the adjustment on the top weight
connecting the first hidden node to the first output

node, 𝛿𝑤11
ℎ𝑦

, could just be:
𝛿𝑤11

ℎ𝑦
= 𝛼 ∗ ℎ𝑗∗ 𝑒𝑘 = 0.01*0.197*0.345 = 0.00068

𝛿𝑤𝑗𝑘
ℎ𝑦

= 𝛼 ∗ ℎ𝑗∗ 𝑒𝑘 ∝ ℎ𝑗 ∗ 𝑒𝑘

0.197

𝑤11
ℎ𝑦

= 𝑤11
ℎ𝑦

- 𝛿𝑤11
ℎ𝑦

= 0.08 − 0.00068
= 0.07932

Step 4: Adjusting weights
Matrix

• We can compute all the adjustments 𝛿𝑤
ℎ𝑦

with one
matrix operation. Assume a learning rate 𝛼 = 0.01

𝛿𝑤
ℎ𝑦

= 𝛼ℎ𝑇𝑒 = 0.01
0.197
0.149
−0.01

0.345 −0.665 0.32

=
0.00068 −0.00131 0.00063
0.00051 −0.00099 0.00047
−0.00003 0.00007 −0.00003

Step 4: Adjusting weights
Theory

• Why the formula?

• The theory of weights adjustment
• Gradient descent, partial derivatives

• The theory of optimization

𝑤𝑗𝑘
ℎ𝑦

= 𝑤𝑗𝑘
ℎ𝑦

- 𝛿𝑤𝑗𝑘
ℎ𝑦

𝛿𝑤𝑗𝑘
ℎ𝑦

∝ ℎ𝑗∗ 𝑒𝑘

Step 5: Backward propagation
Basic concept

• In Step 4 we use the error ey to update why

• Here we need to further update wxh

• Backpropagate the error of output layer ey

to hidden layer: the error of hidden layer eh

• Use the error eh to update wxh

eyeh
𝑤𝑥ℎ 𝑤ℎ𝑦

Step 5: Backward propagation
Error propagation

• Backpropagate the error of output layer ey to
hidden layer: the error of hidden layer eh

eyeh

𝑒ℎ = 𝑒𝑦𝑤
ℎ𝑦

= 0.345 −0.665 0.32
0.08 0.11 −0.3
0.1 −0.15 0.08
0.1 0.1 −0.07

= −0.007 0.17 −0.18

𝑤𝑥ℎ 𝑤ℎ𝑦

Step 5: Backward propagation

𝑧𝑒ℎ = 𝑒ℎ ⊙ 1− 𝑠𝑖𝑔𝑚𝑜𝑖𝑑2 𝑧ℎ
= −0.007 0.17 −0.18 ⊙ 0.961 0.978 0.999 = 0.192 0.147 −0.001

ey

eh

𝑤𝑥ℎ 𝑤ℎ𝑦𝑧𝑒ℎ

𝛿𝑤𝑥ℎ = 𝛼𝑥𝑇𝑧𝑒ℎ = 0.01
1
0
0

0.192 0.147 −0.001

=
0.00192 0.00147 −0.00001

0 0 0
0 0 0

x

1

0

0

Step 5: Backward propagation
Changing weights

𝛿𝑤𝑥ℎ =
0.00192 0.00147 −0.00001

0 0 0
0 0 0

𝑤𝑥ℎ =
0.2 0.15 −0.01

−0.03 −0.1 −0.06
0.14 −0.2 0.03

𝑤𝑥ℎ − 𝛿𝑤𝑥ℎ =
0.19808 0.14853 −0.00999
−0.03 −0.1 −0.06
0.14 −0.2 0.03

Final network

• Final training result •Convert letter A to letter B
• An input of 100
• Hidden nodes activation values:

+1, -1 and -1.
• Output layer has weighted sums

of -10, 10, -10,
• Probabilities : 0%, 100%, 0%.
• An output of 010.

Summary of the
Single-sample Training

• Given a single training sample (x,y)

• x: input values, y: desired output values

• Network training will get a new weight matrix w

• Basic steps to train the network
1. Randomly initialize the weight matrix w=(wxh,why)

2. Forward propagation: y'=xw

3. Compute the error: E=y – y'

4. Compute weight change value by the error: Δw=f(E)

5. Backpropagation: w = w - Δw

6. Go to step 2 0

1

0

x ysupervised learning

Learning of MLP Network

An example of backpropagation learning
Learning algorithms
Optimization and learning

The learning algorithm

• We just know how to train the MLP for
"only one" learning sample: (x,y)

• How to train the MLP for a lot of learning
samples,𝒳={(x1,y1), (x2,y2), ... , (xN,yN)} ?
• Online learning
• Offline(Batch) learning

Online learning vs. Batch learning

• Online
• Randomly initialize w

• For a (xi,yi)∈𝒳 in random order
• Forward propagation:

get error e

• Backward propagation:
get weight change Δwi

• Update w : w=w-Δwi

• Until convergence

• Offline(Batch)
• Randomly initialize w

• While not converge

• For all (xi,yi)∈𝒳 in sequential
order

• Forward propagation:
get error e

• Backward propagation:
get weight change Δwi

• Average N weight changes:
Δw = (σ𝑖=1

𝑁 ∆𝑤𝑖)/N

• Update w : w=w-Δw

• Until convergence
Online learning is also called

SGD(Stochastic gradient descent)

Improving the learning algorithm

• Improving convergence
• Momentum, adaptive learning rate
• Improved gradient descent

• Mini-batch techniques

• Hardware acceleration
• Parallel training, GPGPU

Parallel training of neural nets
An active topic of research.

No clear winner yet.

Baseline: lock-free stochastic gradient

Assume shared memory

Each processor access the weights through the shared memory

Each processor runs SGD on different examples

Read and writes to the weight memory are unsynchronized.

Synchronization issues are just another kind noise…

Learning of MLP Network

An example of backpropagation learning
Learning algorithms
Optimization and learning

Convex

Non-convex

Derivatives

Optimization vs. learning

Offline vs. online

Stochastic Gradient Descent

